The Diesel Stop banner
1 - 12 of 12 Posts

· Registered
Joined
·
233 Posts
Discussion Starter · #1 ·
Hello Everyone - I was wondering if some of you could give me your best advise. We have a '96 Powerstroke that we are using to pull a 44' enclosed car trailer with two cars. Going up hills the truck seems to really labor ... EGT's are around 1000-1100. I know that with this setup I am not going to be flying up and down the hills however it seems like I should be able to go along pretty good.

The turbo was just rebuilt - I am getting about 10psi of boost. We are also running an EDGE clip ...

Is there anything I can/should do to help her out? The engine really seems to run well - No smoke or anything. Any suggestions or is this just the way of these trucks?
 

· Super Moderator
Joined
·
9,225 Posts
The first thing that I would do is open up the exhaust by getting rid of the stock down pipe along with a open air air intake such as the Tymar or a DIY one. The next thing for me would be to get a custom burnt chip instead of the Edge. For some reason a custom burnt one just does better in my opinion. Then check out your gearing, the OBS trucks came with either 3:55's which are bad for towing or 4:10 which are better for towing, also if you have taller tires that will hurt your towing capabilities.
 

· Registered
Joined
·
152 Posts
Everything Bugman has stated is spot on. Replacing the air intake is the easiest and cheapest route to take and you will see immediate results. I was impressed with the change in towing after all of my exhaust modifications. If she breathes better she runs better.
 

· Registered
Joined
·
233 Posts
Discussion Starter · #4 ·
Thanks guys ... I actually have made an adaptation for my air filter ... We had an incident where ether blew up the air box so I had to make something fit ... I ended up finding an air filter of a Chevy - Its probably about 15" inches in diameter and utilizes the stock piping.

What is it about the intake that makes the change? Bigger air filter or the piping?
 

· Registered
Joined
·
1,058 Posts
Please tell me you are not using ether with the glowplugs functioning. Look up the specs on a NAPA 6637 air filter, thats what the Tymar is. Bigger filter, same size pipe. The aftermarket downpipes are mandrel bent and flow a lot better than the stock one. You can search here for the tuners, DP and Tony Wildman are the ones that come to mind. Check out the sponsor links, I know they are there. With the truck laboring, I assume and automatic? What gear are you in going up the hills. I think your EGT's will drop if you run a lower gear and more RPM's. With the loads I pull and my auto, I spend a lot of time in 2nd gear running about 3,000-3,400 rpms. I can feather the fuel pedal and keep it in OD, but them I'm chugging along at about 50 in a 65 doing like you, making 10 lbs of boost wishing for more power.
AaronSEIA
 

· Registered
Joined
·
233 Posts
Discussion Starter · #7 ·
One time with ether ... Lesson learned. That NAPA filter is exactly what I am using. I adapted it to the existing orange pipe with 4" PVC. Will the K&N be that much better?

The truck is an Automatic. I am running it in drive with the OD off. Can we tow in 2nd gear without hurting anything?

I am going to do a down pipe - There are a couple on Ebay - The most expensive is like $100 ... Seems to be an easy upgrade.
 

· Registered
Joined
·
1,058 Posts
Most here will tell you the K&N is a major no-no. Lets too much dirt in and is hard on turbos. I'm pretty sure that as long as you can keep your tranny temps down, you are better off towing at high engine RPM's than lugging along. Others who tow in the mountains can chime in with what works for them. The DP is an easy upgrade. Might have to do some re-working of the pinch weld to make it fit, but nothing a 2x4 and big hammer can't fix. While you are at it, look into doing the EBPV delete. You'll need a sawsall to cut the stock DP off. Get it all loose, pull it up as far as you can into the engine bay and whack it off there, makes removal so much easier.
AaronSEIA
 

· Registered
Joined
·
233 Posts
Discussion Starter · #9 ·
Whew - I started this thread - Great people have responded and I lost touch! I started a new job and it has consumed me ... Getting back in the swing of things has been interesting also ...

So - Ok - I a down pipe needs to be done 1st. That seems easy enough. The turbo was just rebuilt less than 500 miles ago so it should be an easy transformation.

I wish I had of known about the EBPV - when I sent it to him! Darn it!

http://www.thedieselstop.com/forums/f25/ebpv-delete-154194/

In this thread the last addition to the thread a guy talks about just unplugging the EBPV? Does that work?

Thanks guys!
 

· Registered
Joined
·
985 Posts
Unplugging it just keeps it from activating like it does normally when conditions are right in the cold weather. The purpose of removing it is to completely remove the obstructions from the airstream, thus allowing the air to flow better with less turbulence. I expect the gain from removing it to be minimal though, so I've never bothered with looking into it on my truck.
 

· Premium Member
Joined
·
1,995 Posts
Since you're towing, you might consider turning the exhaust backpressure valve into an exhaust brake.

The general consensus (on the interwebs, at least) seems to be the Edge stuff runs hot, especially on the '94-'97 trucks. There are a bunch of options when it comes to an adjustable chip. My recommendation is Tyrant Diesel (Cale Thompson). I really like his programming and the adjustments to the transmission shifting. :cool:

Cheers from Claremore, OK! :)
Dave
 

· Registered
Joined
·
432 Posts
Exhaust Brake - Make one Yourself

Since you're towing, you might consider turning the exhaust backpressure valve into an exhaust brake.

The general consensus (on the interwebs, at least) seems to be the Edge stuff runs hot, especially on the '94-'97 trucks. There are a bunch of options when it comes to an adjustable chip. My recommendation is Tyrant Diesel (Cale Thompson). I really like his programming and the adjustments to the transmission shifting. :cool:

Cheers from Claremore, OK! :)
Dave
'

I was thinking the same thing Dave.




Mod & Article by Jonathan Ryan

The Engine Exhaust Back Pressure Valve (EBPV) is a butterfly type valve located on the outlet of the turbocharger, between the turbine and the down pipe. It is controlled by the Power train Control Module (PCM), and activated by engine oil pressure. Its purpose is to decrease engine warm up time in cold weather by restricting exhaust flow out of the engine. It can be very easily and very inexpensively converted into an engine exhaust brake by adding some simple wiring and a switch.
The valve is very practical for assisting braking. When used correctly its braking effect can be compared to the restriction gained by downshifting one gear while descending a hill. The valve is most valuable to braking when engine speed is between 2500 and 3000 RPM. Unfortunately, it will lose the engine braking abilities when engine speed drops below 2000 RPM.
The following method outlines the manner in which the EBPV can be converted to a braking device. The following will cover any vehicle equipped with a manual transmission. Vehicles equipped with automatic transmissions will require an additional circuit to be added in order to maintain torque converter lockup while the exhaust brake is activated. That circuit will be addressed at the end of this article, however the majority of this article is applicable for both transmission types.

EBPV Schematic at Webshots Outdated Link
In order to control the function of the EBPV, I recommend using a 3-position switch. This type of switch will control the Valve in the following manner:

Switch in the OFF Position (center position): The EBPV will function normally, as it would for a stock vehicle. This means that the valve will only actuate in order to warm up the engine.

Switch in the "A" ON Position: the EBPV closes and remains closed until the switch is turned OFF.

Switch in the �B� ON Position: the EBPV will close whenever the brake pedal is pressed, and will open when the pedal is released. There will be a 2-3 second lag for the exhaust valve to close upon stepping on the brake. Thus, it is important to understand that when using it in the "B" ON position to push the pedal and hold it down with steady pressure. The reason for keeping pedal pressure is that the EBPV actuator is receiving power from the brake light circuit when the switch is in this position. Thus, pumping the brakes or releasing the pedal will cause the valve to deactivate or open. Furthermore, once the brake is applied again it will take another two seconds for the EBPV to activate again. Unfortunately, pumping the brake pedal will result in the exhaust valve remaining in a constant open position. This will provide ZERO engine braking force. To prevent this less than desirable phenomenon from happening, it is important the operator keep his foot on the brake lightly enough that the brake light switch is continually activated. I prefer touching and holding my pedal just hard enough for the brake lights to come on; then, when I hear the EBPV close (it makes a distinct hissing), I begin applying additional pressure to the brake pedal. Reducing brake pedal pressure can be done without losing exhaust-braking force, as long as there is enough pedal pressure maintained to keep the brake lights on.

Materials:

(1) ON-OFF-ON type Heavy Duty Double-Pole Double-Throw (DPDT) toggle switch. It will have connections for 6 wires on the back, and the switch will have 3 positions UP=ON, CENTER=OFF, DOWN=ON. RS (Radio Shack)# 275-1533A $2.49 or 275-710 $2.99 � 25'-30' of 18 gauge wire. 5'-7' each of 4 different colors is best. � (10-12) Ring or Spade terminals for wire connections. 18-22 gauge are red. RS# 64-3032A or 64-3033A $1.49 (4-6) Butt connectors for wires. 18-22 gauge are red. RS# 64-3037A $1.49 � (2) Rectifier Diodes. A diode is the equivalent on an electrical check valve, allowing current to flow in only one direction. RS# 276-1114 � (2) Optional Mini Indicator lamps. RS# 276-085A (red) 276-084A (green) $1.99 each. (By using the switch indicator lights, the operator immediately knows how the EBPV is activated or not.) � 10' Split loom for protecting wires. RS# 278-1264 $3.99 � (10) Wire ties. � (1) Inline fuse holder. RS# 270-1213 $1.99 � Electrical tape. I recommend Liquid Electrical Tape as being better for almost everything. � Tape and Marker (In order to label wires.)
Tools:
Wire cutters/strippers � Screw Drivers � Drill w/ bits up to 7/16" � Volt/Ohm Meter, or at least a test light. � Soldering Iron is recommended but not essential. � Torx bits &/or 1/4" drive metric sockets to remove dashboard trim to install switch.
Procedure:
Decide on a place in the dash to install the switch. I installed mine in the black panel just to the right of the "Wait to Start" light. There is room for 2-3 switches there.
Remove the necessary trim and molding around the steering column / instrument panel to access the reverse side of where you want the switch. Drill a 1/2" hole, and install the switch. Re-install the molding to make sure it fits into place when the switch is installed. Then, remove the switch and the molding again for ease of access while wiring.
Wire #1: Decide what you will use for a positive power source. Insure that this source is one that is "ON" only when the ignition is in the �ON� position. I recommend the 8 gauge, gray/yellow wire in the bundle under the steering column. You can also tap a fuse in the fuse panel. Run wire [#1] from the source to the switch, connecting it to terminal A2. I numbered the terminals as viewed from the back of the switch Install the inline fuse holder on this line. Make sure to leave 6"-12" or more of slack on all the wires. You can always bundle them up later.
Wire #2: Decide placement of a negative power point or ground, and run a wire from this to the switch, connecting it to terminal C1.
Connect one light to terminals A1 and C2; this is light A. Connect the other light to terminals B1 and C2; this is light B. Drill holes for the lights just above and below the switch. Install the lights with B in the top hole, and A in the bottom. I recommend this because when the switch is down, contact is made between A+C; when the switch is up, contact is between B+C. For simplicity, the diagram does not show the lights "crossed" like this.
Remove the black-hinged cover from over the fuel filter area in the engine compartment.
Wires#3 & #4: Run two wires from the switch through the firewall into the engine compartment. Connect one [#3] to terminal C2 and run it to the front of the engine. Connect the other [#4] to terminal B2 and run it to the brake master cylinder. If you have a horizontal diamond shaped plate about 2.5" wide just to the passenger's side of the clutch cylinder, remove the screws and run the wires through it. Otherwise, you may need to drill a hole. I always find that running the wires is the hardest part of any wiring project.
There should be a green wire by the driver's side of the master cylinder in the group of 4 marked "Center High Mount Stop Lamp Feed." This wire most likely will not be connected to anything. This wire is only energized when the brake lights come on. Connect wire [#4] to this one. If this wire is not present, use a voltmeter or test light to find a wire that is hot only when the brake lights are on and connect to that wire instead.
Locate the wires that travel from the PCM to the EBPV. There should be a 2-wire plug just under the turbo compressor. It is located towards the front of the engine between the turbocharger and the fuel pump on the intake side of the turbocharger. The plug is attached to the turbo pedestal. Disconnect this plug, and remove the loom (protective plastic shielding) on the plug side moving away from the turbo, to expose the wires inside. Slide off the loom until it reaches the intersection of the larger wire bundle. This will expose both wires; one wire is black w/gray, the other gray w/red.
The Two Rectifier Diodes that are required will each have a silver band around one end. Twist the wires from the "silver" ends together making a "Y.� The "black" ends will be at the top and the silver ends at the bottom of the "Y.� Cut the gray w/red wire 2"-3" before the plug, strip the insulation back 1/2" or so, and solder the black end on one diode to the end of the cut wire that does NOT go into the plug. Solder the black end on the other diode to wire [#3]; solder the two silver ends to the gray w/red wire that goes into the plug. The diodes are necessary to prevent the brake lights from coming on when the PCM operates the EBPV, and to prevent the PCM from receiving a 12v signal from wire [#1]. If you don't have a soldering iron, you can use crimp connectors.
Coat all the wire connections with several coats of Liquid Electrical Tape, then wrap them with regular electrical tape, and replace the loom. Also, cover wires [#3 & #4] with loom, all the way to the switch. Bundle up any excess wire with wire ties, and secure them all to prevent chafing. Install the switch in its hole, and replace the dash trim.
Automatic Transmission Circuit:
If the intention is to use the EBPV as a brake with an Automatic Transmission equipped vehicle, then an additional circuit is required in order to reap the most engine braking benefit from this application. This circuit will keep the torque converter locked up while the valve is in an activated state. In effect, it maintains engine RPM in relation to ground speed and prevents transmission disconnection, which would result in loss of engine speed, ultimately reducing the effectiveness of the exhaust valve as an engine brake.
Auto Trans Circuit Procedure: Run a wire from [#3] to connect to the TC lockup circuit. Install a diode on that wire with the silver end towards the transmission.
Testing:
To test, start the engine. With the switch in the up position, the upper light should come on when you press the brake pedal, and you should hear a distinct hissing or swooshing sound when the EBPV closes, after 2-3 seconds. With the switch down, the bottom light should come on and stay on, and the EBPV will close immediately.
Conclusions:
I find no advantage to using the EBPV brake with an unloaded truck during normal driving. However, when I am hauling a heavy load, it is worth its weight in gold. During normal hauling, I leave it in the up position, so I will have extra braking power when I need it. For exit ramps and long or steep downgrades, I put it in the down position and leave it on as long as practical. When the truck is parked, you can leave the switch in the down position, as it is useful as an anti-theft device. The activated valve will not allow the truck to go much over 33 mph. This is also very useful for very fast warm-ups in winter.
 
1 - 12 of 12 Posts
This is an older thread, you may not receive a response, and could be reviving an old thread. Please consider creating a new thread.
Top